National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Towards lateral interactions within self-organized monomolecular layers
Staněk, Jan ; Baše, Tomáš (advisor) ; Bastl, Zdeněk (referee)
This work aimed at the utilization of chemical principles for stabilization of self-assembled monolayers (SAMs) of carboranethiol derivatives on a flat gold surface. Ideas employing surface confined coordination complex formation and dipole-dipole intermolecular interactions were outlined and the respective literature survey was compiled. Preliminary experiments were carried out to test for their feasibility and surfaces modified with self assembled monolayers proved very sensitive to reaction conditions ordinarily used for bulk synthesis. The chemical sensitivity of the studied surfaces, the necessity of using appropriate surface-sensitive analytical techniques and the depth of the problem initially defined made this task both advanced and challenging. The formation of intermolecular coordination complexes with ω-carboxylated SAMs of meta-carborane-9-thiol was chosen to answer those issues, extending the previous work of the author on carboxylated carboranethiol isomers presented in his bachelor thesis. Concepts different of those based on coordination chemistry are briefly discussed as well, but more as prospects for future work and to present this work in a broader context to which it belongs. Characterization of molecules assembled on a surface in a single layer requires surface sensitive...
Characterization and tribological testing of a carbon-based nanolayer prepared by ion beam assisted deposition
Horažďovský, T. ; Kovač, J. ; Drbohlav, Ivo
Carbon-based nanolayers have been attracting much attention due to their excellent low-friction properties, their high hardness and their good wear resistance. In this work we present the results of material research aimed at reducing the friction of the functional surfaces of titanium implants, and thus extending their lifetime to reoperation. An analysis of the chemical composition showed that the modified surface is composed of a carbon-based nanolayer, a mixed interface, and a nitrogen-enriched sublayer. Raman spectroscopy showed the DLC character of the carbon-based nanolayer with sp2 rich bonds. A TiN compound was detected by X-ray diffraction in the modified surface area.\n

Interested in being notified about new results for this query?
Subscribe to the RSS feed.